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Abstract—The technique described uses a series of impedance
measurements with different lead combinations and a calculation
to determine the impedance of an unknown in the presence of lead
and loading impedances. In general, a four-terminal ac or dc mea-
surement requires four leads, four switches, and a series of five
two-terminal measurements. However, an ac bridge is shown
that requires only two switches and three measurements. The
impedance of the switches used to select the lead combinations
has no effect on the measurement if it is constant and changes in
switch resistance between closures can be avoided by choosing a
measurement sequence that closes each switch only once.
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Most guarded four-terminal bridges are subject to errors caused
by impedance to guard at the unknown end of the leads. A series
of seven three-terminal measurements corrects for this type of
error, which is particularly important for in sifu measurements
or for high-precision measurements on three-terminal standards.

The technique is particularly applicable to an automatic com-
puterized device because two-terminal automatic bridges are sub-
stantially simpler than four-terminal bridges and because the
speed of such a system and its computer can easily overcome the
main disadvantages of the method—the necessity for several
measurements and the calculation (which includes square roots).
However, three two-terminal measurements and a simple calculation
will measure a four-terminal impedance with a residual error that
can be very small if the lead impedances are approximately equal,
Thus the method may be practical for manual measurements as well.




InTRODUCTION

HE measurement technique described in this paper
Tfnr avoiding connection errors is so simple that it is

difficult to believe it has not been used previously.
However, no references to it could be found. Metrology
experts who were asked about it were unfamiliar with it.
Therefore, even if it is not new but just lost somewhere in
the literature, it should be revived for it would seem that
it has partieular application to modern automatic measur-
ing systems that include a computer.

This multimeasurement technique for avoiding con-
nection errors is particularly applicable to such systems
because it simplifies their design appreciably and because
they easily overcome the major disadvantages of the
method,

The computer can correct for known sources of error
internal to the bridge, but lead errors on a two-terminal
bridge cannot be corrected for unless the impedance of the
leads is known and remains constant. The usual method of
measuring the lead impedance, shorting the leads together
at the unknown, may depend critically on the resistance
of the short. Also, the impedance of the actual connection
to the unknown would be undetermined and wvariable.
While a four-terminal bridge would remove lead errors,
the additional adjustable components of a Kelvin bridge
(the extra adjustable bridge arm and thé “lead” and
“yoke” balances) are expensive in an automatic bridge
because they must be programmable and have additional
logic to control them. Four-terminal ac bridges without
additional adjustments have been described, but they do
not remove lead errors entirely [1].

The technique requires a calculation that includes a
square root; this is awkward to do by hand, especially if it
is the square root of a complex number. Someone would
have to write the program, but a digital computer could
execute it quickly. The technique also requires several
measurements to evaluate one unknown. Automatic
bridges are fast; most of them are particularly fast if the
differences between successive measurements are small, as
they usually would be with this method.

There are several other multimeasurement techniques
used for this type of measurement, such as the Mueller
bridge, Smith's methods I and IT, methods deseribed by
Kleven [2] and Riley [3], and probably others. However,
this technique is distinctly different from these methods,
particularly in that it can be used with any two- or four-
terminal ac or de bridge and with any bridge ratio.

Four-TeErMinAL DC MBEASUREMENTS

The technique is outlined in simplest form in Fig. 1.
Here M, M., and M, are the results of three two-terminal
measurements on the network shown. They are assumed
to be corrected for all errors in the measuring device itself
and, therefore, perfect. By using the formula given in
Fig. 1," the value of E. can be calculated without error

1 The positive value of all square-root terms should be used
and added or subtracted as indicated.
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Fig. 1. Multimeasurement method, simplest form.
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Tig. 2. Four-terminal resistance measurement using five two-
terminal measurements,

from these three measurements, as long as the lead
resistances r, and r; remain constant during the sequence
of measurements, These resistances represent the total
resistance in each branch including the resistances of the
switch contacts. If the sequence shown is used, each
switch is closed only once so that changes in contact
resistance between closures are avoided.

The situation of Fig. 1 is generally impractical because
the return connection to R. would also have resistance.
Tig. 2 shows a four-terminal measurement. Note that
only two bridge terminals are required. Thus, this bridge
may be a conventional Wheatstone bridge whose terminal
resistance is known (and would be corrected for) or a
four-terminal bridge connected as a two-terminal bridge
as indicated by the dotted lines. A four-terminal con-
nection of a Wheatstone bridge [3] or a Kelyin bridge
could be used. In the latter, the yoke and lead resistances
would only be those of the internal bridge wiring and the
dotted connection shown, so that these adjustments
should not be very critical and probably would need to be
made only once. In an automatic system, the switches
would be internal so that there would be four terminals or
connectors.

In this circuit there are live undetermined quantities
and five measurements are required to determine R,
exactly. Aectually there are nine possible switch com-
binations, but four are redundant. There are several sets
of five measurements that may be used. The sequence
shown is one in which each switch is closed only once, as
before, to avoid switeh ervors,

Recently, Pailthorp and Riley [4] suggested a set of five
measurements that could determine all five quantities of
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the four-terminal network of Fig. 2, using only two leads
at a time. They measured r; + r, and r; + 7, directly by
appropriate connection. In their method, the resistance of
the switches (or connections) could not be combined with
the four lead resistances so that they introduced errors
unless these were negligible.

Their method suggests the four-measurement sequence
of Fig. 3 which has only one switch associated with
each lead so that the switch and lead resistance may be
combined as one quantity. This method has the advantage
of a simpler calculation as well as one less measurement,
but has the disadvantages that no sequence will give one
closure per switch and that the measured values would
differ greatly in most cases. Generally, successive mea-
surements may be made more rapidly if they are approx-
imately the same whether the bridge is manual or auto-
matie.

It should be noted that these are true four-terminal
measurements. If a four-terminal resistor wers being
measured, the resistances of leads internal to its structure
would be included in the lead resistances shown. The
calculated value of B, would include only that resistance
between the two lead junctions which is the definition of
its four-terminal value.

Four-TERMINAL AC MEASUREMENTS

The technique is equally applicable to ac bridges of all
types. The resistances in the formulas become impedances
and therefore complex, but the procedure and formulas are
the same.

The most precise ac bridges employ transformer ratio
arms and may be two- or four-terminal, In some two-
terminal bridges, the series impedance of the transformer
(winding resistance and leakage inductance) appears in
series with the unknown. In the bridge of Fig. 4 there are
two equal windings on the unknown side of the bridge, each
connected to one switch. Here the impedances z, and z,
include the impedances of these windings so that their
effect is removed by the correction terms of Fig. 2.

There will also be impedance in the connection of the
bridge standard, Z,, which may be determined and cor-
rected for. Alternatively, Z, may be connected by two
windings and four switches as is Z,, another set of meas-
urements made, and further correction terms calculated.

The two-transformer bridge of Fig. 5 has the further
advantage that one quantity can represent the total
impedance of each loop, including the impedances of the
switch, two connecting leads and two transformer windings.
The simple three-measurement sequence and formula of
Fig. 1 would be used. Again, Z, also could be connected
with two pairs of windings and two switches and more
measurements and corrections made.

A remaining souree of error in ae bridges is the mutual
inductance between the leads that ean appear effectively
in series with the unknown. The position of the leads would
be eritical in very-low-impedance or high-frequency
measurements, but their mutual inductance is constant if
their position is fixed and therefore may be corrected for. -
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Fig. 3. Four-terminal measurement using four two-terminal
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Fig. 4. Ac four-terminal measurement with winding impedances
included in total lead impedance.
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Fig. 5. Ac four-terminal measurement using three two-terminal
measurements.

F1veE-TERMINATL MEASUREMENTS

A resistance bridge with a Wagner guard can make a
direet three-terminal measurement on a three-terminal
network, ignoring resistance from either unknown terminal
to guard. However, if the leads have appreciable resistance,
as in Fig. 6, not only will they cause errors by themselves,
but if the shunt resistances (R, and R,) are at the unknown
end of the leads, the divider action of the leads and the
shunts will cause additional error terms. This type of
error is important in 7n situ measurements of components
connected in a network. It is also important in extremely
precise measurements on three-terminal deviees [5]. Most
guarded four-terminal (or five-terminal) bridges will not



252

LA ty 28y S, S; Sy Sa

(<: RA‘ M, v V

N A \_.,:MJ /8w [V vV
. ' R s Ry M, 7% 7. P
M| vI|v|v]v
GUARD M| v | v 4
M, vV v
M. v v

Ry M/ My MM M) = /M MMM, ) % /MMM MM MMM )

i f fafs R« A | |
MR, T (";': )* A ('* R..) (Tl (E*R_s ¥ Rk

Fig. 6. Five-terminal measurement with loading at unknown.

remove this error.” However, a series of three-terminal
measurements will remove it.

In the circuit of Fig. 6, there are seven undetermined
quantities and seven measurements are required to obtain
E.. Unfortunately, no sequence of seven measurements
gives only one closure per switch. The one shown requires
that two switches close twice. The required calculation now
has three square-root terms. The expression for one
measurement, is given to show its form, particularly the
interaction terms. The others are easily derived from it.

If the shunt resistances R, and R, are connected together
at the unknown and their junection econnected to the bridge
guard by one lead, the resistance of this lead can also
cause error in some cases, One solution might be to use two
guard leads, two more switches, and more measurements to
determine R.. (An exact formula has not been determined
for this case.) Another solution is to remove the internal
connections to the bridge guard and to bring them out
separately to the guard point at the unknown.

Ac transformer-ratio-arm bridges are relatively immune
from shunt loading so that they make accurate three-
terminal measurements. However, they do not remove the
error caused by shunt loading at the end of leads with
appreciable impedance. The bridge of Fig. 7 and the
measurement sequence and formula of Fig. 6 will give a
result independent of this source of error as well as of the
errors due to the leads themselves.

AprpPrOXIMATE CORRECTIONS

While the technique described above would appear to be
particularly suitable for automatic computer-controlled
gystems, it can also be used with manual bridges. A modern
desk caleulator would be helpful to make the calculations,
but the complex ac calculations might still be different.
However, in many applications a simplified formula can
give the result with negligible error.

The three-measurement method outlined in Fig. S uses
only three of the five measurements outlined in Fig. 2 and
has a very simple correction term. The remaining error
shown contains squared resistance—difference factors so
that it can be very small if matched leads are used.

2 Some active bridges or bridges with active guard circuits will
avoid this error. See [51.
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Fig. 8. Approximate four-terminal measurement.

This method would be useful in resistance thermometry
where the lead resistances are rather high, but lead
resistance differences can be small. One platinum resistance
thermometer measured (Leeds and Northrup type-8163
with 8-ft leads) had lead resistances of about 1 @ each, but
resistance differences r, — r, and r; — 4 of only 6 and
10 m®. This would give a residual error of about 35 uQ or a
little over 1 ppm. Moreover, if the switches (and leads to
them from the bridge) have low or matched resistance,
this error is mainly dependent on the thermometer being
used. This quantity could be easily determined and noted.
If this correction were also made, the accuracy of the
method might be beyond the absolute accuracy of any
thermometer or bridge available. For precise temperature
difference measurements where extreme resolution is
important, this residual error could be ignored since it
would be almost constant and cancel out.

The simplified formula of Fig. 8 was arrived at by using
the expression

a+b[1 _(fr;g)*]""mu*b
2 a-+ b o b

a0, (1)

(ab)uz o

By using this approximation for the full five-terminal
case (Fig. 5),

M, + M,
2

2, ~4M, + - M, — M;— M, — M, (2)

with error terms all containing (r, — rs)® and (ry — 74’
factors so that if the lead impedances are well balanced the
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errors are small. Even better error expressions may be
obtained by expanding the square root into a power series
and using as many terms as required.

CoONCLUSIONS

The technique desecribed for making multiterminal
impedance measurements would appear to be particularly
useful in computerized impedance-measurement systems.
It eould be applied to manual measurements as well.

Several measurements were made to check the formulas
using rather exaggerated values of lead and shunting
impedance. No actual computerized system was used so
that this applieation is pure conjecture.

Other areas of possible application would be in situ
measurements, precision measurements on three-terminal
standards, high-frequency measurements, and perhaps the
measurement of voltage and current.

Author’'s Nole

R. M. Pailthorp of Electro-Scientific Industries points
out that the method ecredited to J. C. Riley and him
[4] was deseribed by G. F. C. Searle in 1911. (“On re-
sistances with current and potential terminals,” The
Electrician, no. 1715, March 31, 1911, reprints available as

Technical Article TA-12 from ESI.) This paper also
describes the method of Fig. 3.

Pailthorp also comments that the method of Fig. 3
has the important advantage that the zero resistance of a
two-terminal bridge used to make this set of measurements
would not affect the calculated result. He also mentions
that this method has the disadvantage of having the open-
circuit impedance of the unused switches shunting the
unknown when it is included in the circuit (M, and M,).
This would be important for high-impedance measure-
ments.
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